LECTURE 37 – PNEUMATIC ACTUATORS

SELF EVALUATION QUESTIONS AND ANSWERS

- 1. A pneumatic cylinder has a bore of 200 mm and a piston rod diameter of 140 mm. For an extend speed of 5m/min. Calculate
 - a) The supply flow rate
 - b) The flow rate from the annulus side on extend
 - c) The retract speed using Q_E
 - d) The flow rate from the full bore end on retract
- 2. A compressor supplies air at 0.002 m³/s to a 50mm diameter double acting cylinder and a rod diameter is 20mm. If the load is 1000N both in extending and retracting, find
 - a. Piston velocity during the extension stroke and retraction stroke
 - b. Pressure during the extension stroke and retraction stroke
 - c. Power during the extension stroke and retraction stroke
- 3. A pneumatic cylinder has to move a table of weight 2000N. Speed of the cylinder is to be accelerated up to a velocity of 0.13m/s in 0.5 seconds and brought to stop within a distance of 0.02m. Assume coefficient of sliding friction as 0.15 and cylinder bore diameter as 50mm. Calculate the surge pressure.

Q1Solution

a) Flow rate of oil to extend cylinder at 5m/min $Q_E\!=\!$ area of piston \times velocity

$$=\frac{\pi}{4} \times (200/1000)^2 \times \frac{5}{60} = 0.00262 \text{m}^3/\text{min}$$

$$=0.00262 \times 60 \times 1000 = 157 \text{ LPM}$$

b). Flow of oil leaving cylinder q_E is given by

 q_E = annulus area × velocity

=
$$\frac{\pi}{4}$$
× $((200/1000)^2$ - $(140/1000)^2$)× $\frac{5}{60}$ = 80 LPM

c). The same fluid flow rate used to extend the cylinder(157LPM) is used to retract the cylinder. Retract cylinder velocity V is given by

$$v = Q_E/(A-a)$$

$$Q_E = 157 \text{ LPM} = 0.00262 \text{m}^3$$

(A-a)= annulus area= 0.01602m²

$$v = \frac{0.00262}{0.01602} = 0.614 \text{m/s} = 9.8 \text{ m/min}$$

d) Flow from full bore end of cylinder Q_R is given by

$$Q = A \times v$$

$$= 0.03142 \times 0.164 = 0.00515 \text{m}^3/\text{s} = 309 \text{ LPM}$$

Q2 Solution

Oil flow rate from pump, $Q = 0.002 \text{ m}^3/\text{s}$

Diameter of the cylinder, $d_P = 50 \text{mm} = 0.05 \text{ m}$

Diameter of the rod, $d_r = 20 \text{mm} = 0.02 \text{m}$

Load during the extension and retraction F = 1000N

Part a

Piston velocity during extension stroke $V_E = \frac{Q}{A_P}$

$$= \frac{0.002}{\frac{\pi}{4} \times 0.05^2} = 1 \, m/s$$

Piston velocity during retraction stroke $V_R = \frac{Q}{A_P - A_R}$

$$= \frac{0.002}{\frac{\pi}{4} \times (0.05^2 - 0.02^2)} = 1.2 \ m/s$$

Part b

Cylinder pressure during extension stroke $P_E = \frac{F}{A_P} = \frac{1000}{\frac{\pi}{4} \times 0.05^2} = 5.1$ bar

Cylinder pressure during retraction stroke $P_R = \frac{F}{A_P - A_R} = \frac{1000}{\frac{\pi}{4} \times (0.05^2 - 0.02^2)} = 6.06 bar$

Part c

Cylinder power during extension stroke = $\frac{P_E \times Q}{1000} = \frac{5.1 \times 10^5 \times 0.002}{1000} = 1.02 \text{ kW}$

Cylinder power during extension stroke $=\frac{P_R \times Q}{1000} = \frac{6.06 \times 10^5 \times 0.002}{1000} = 1.21 \text{ kW}$

Q3 Solution

Initial velocity u = 0m/s

Final velocity v = 0.13m/s

Acceleration a
$$=\frac{v-u}{t} = \frac{0.13-0}{0.5} = 0.26 \text{ m/s}^2$$

Force required to move the piston = Dynamic force + frictional force

$$= \left[\frac{w}{g} \times a\right] + \mu. \, w = \left[\frac{2000}{9.81} \times 0.26\right] + 0.15 \times 2000$$

To overcome this force, the pressure required in the hydraulic cylinder is

$$= \frac{353}{\frac{\pi}{4} \times 0.05^2} = 1.79 \times 10^5 Pa = 1.79 bar$$

= 353 N

From the equation for velocity, acceleration and distance $v^2 - u^2 = 2as$

$$a = \frac{v^2 - u^2}{2s} = \frac{0^2 - 0.13^2}{2 \times 0.02} = -0.4225m$$

(The –ve sign indicates that it is deceleration)

The total force required to stop the motion of a cylinder

$$=\frac{2000}{9.81} \times 0.4225 + 2000 \times 0.15 = 386.1N$$

Then pressure created by this opposing force is

$$= \frac{386.1}{\frac{\pi}{4} \times 0.05^2} = 1.96 \times 10^5 Pa = 1.96 bar$$

Thus surge pressure $P_s = P_1 + P_2 = 1.79 + 1.92 = 3.75$ bar